Data Protection
Comprehensive guide to data protection, privacy, and compliance with regulations like GDPR, CCPA, and financial data protection standards.
Overview
Data protection is essential for maintaining user trust and complying with regulatory requirements. This guide covers data classification, encryption, privacy controls, and compliance with major data protection regulations.
Data Classification
Data Categories
Public Data
Description: Information that can be freely shared without restrictions.
Examples:
- Market data and prices
- Public company information
- General platform statistics
- Educational content
Protection Level: Basic Retention: Indefinite Access Control: Open
Internal Data
Description: Information used internally by the organization.
Examples:
- Internal policies and procedures
- Employee information
- System configurations
- Business metrics
Protection Level: Medium Retention: 7 years Access Control: Internal employees only
Confidential Data
Description: Sensitive business information requiring protection.
Examples:
- Trading algorithms
- Business strategies
- Financial reports
- Partnership agreements
Protection Level: High Retention: 10 years Access Control: Authorized personnel only
Restricted Data
Description: Highly sensitive data with strict access controls.
Examples:
- Personal identification information (PII)
- Financial account details
- Trading history
- Authentication credentials
Protection Level: Very High Retention: As required by law Access Control: Need-to-know basis
Data Classification Implementation
Classification Engine
class DataClassifier:
def __init__(self):
self.classification_rules = {
'pii_patterns': [
r'\b\d{3}-\d{2}-\d{4}\b', # SSN
r'\b\d{4}-\d{4}-\d{4}-\d{4}\b', # Credit card
r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' # Email
],
'financial_patterns': [
r'\$[\d,]+\.?\d*', # Currency amounts
r'\b(account|balance|transaction)\b', # Financial terms
],
'trading_patterns': [
r'\b(buy|sell|order|position)\b', # Trading terms
r'\b(BTC|ETH|USD)\b', # Trading symbols
]
}
def classify_data(self, data):
classification = 'public'
confidence = 0.0
# Check for PII
pii_score = self._check_pii_patterns(data)
if pii_score > 0.8:
classification = 'restricted'
confidence = pii_score
# Check for financial data
financial_score = self._check_financial_patterns(data)
if financial_score > 0.7 and classification != 'restricted':
classification = 'confidential'
confidence = financial_score
# Check for trading data
trading_score = self._check_trading_patterns(data)
if trading_score > 0.6 and classification == 'public':
classification = 'internal'
confidence = trading_score
return {
'classification': classification,
'confidence': confidence,
'timestamp': datetime.utcnow().isoformat()
}
def _check_pii_patterns(self, data):
matches = 0
total_patterns = len(self.classification_rules['pii_patterns'])
for pattern in self.classification_rules['pii_patterns']:
if re.search(pattern, str(data), re.IGNORECASE):
matches += 1
return matches / total_patterns
def _check_financial_patterns(self, data):
matches = 0
total_patterns = len(self.classification_rules['financial_patterns'])
for pattern in self.classification_rules['financial_patterns']:
if re.search(pattern, str(data), re.IGNORECASE):
matches += 1
return matches / total_patterns
def _check_trading_patterns(self, data):
matches = 0
total_patterns = len(self.classification_rules['trading_patterns'])
for pattern in self.classification_rules['trading_patterns']:
if re.search(pattern, str(data), re.IGNORECASE):
matches += 1
return matches / total_patterns
Data Encryption
Encryption at Rest
Database Encryption
from cryptography.fernet import Fernet
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
import base64
class DatabaseEncryption:
def __init__(self, master_key):
self.master_key = master_key
self.encryption_keys = {}
def generate_table_key(self, table_name):
# Generate unique encryption key for each table
salt = table_name.encode()
kdf = PBKDF2HMAC(
algorithm=hashes.SHA256(),
length=32,
salt=salt,
iterations=100000,
)
key = base64.urlsafe_b64encode(kdf.derive(self.master_key))
self.encryption_keys[table_name] = key
return key
def encrypt_field(self, table_name, field_name, value):
if value is None:
return None
key = self.encryption_keys.get(table_name)
if not key:
key = self.generate_table_key(table_name)
f = Fernet(key)
encrypted_value = f.encrypt(str(value).encode())
return encrypted_value.decode()
def decrypt_field(self, table_name, field_name, encrypted_value):
if encrypted_value is None:
return None
key = self.encryption_keys.get(table_name)
if not key:
raise ValueError(f"No encryption key found for table {table_name}")
f = Fernet(key)
decrypted_value = f.decrypt(encrypted_value.encode())
return decrypted_value.decode()
File System Encryption
import os
from pathlib import Path
class FileSystemEncryption:
def __init__(self, encryption_key):
self.encryption_key = encryption_key
self.fernet = Fernet(encryption_key)
def encrypt_file(self, file_path, encrypted_path):
with open(file_path, 'rb') as file:
file_data = file.read()
encrypted_data = self.fernet.encrypt(file_data)
with open(encrypted_path, 'wb') as encrypted_file:
encrypted_file.write(encrypted_data)
def decrypt_file(self, encrypted_path, decrypted_path):
with open(encrypted_path, 'rb') as encrypted_file:
encrypted_data = encrypted_file.read()
decrypted_data = self.fernet.decrypt(encrypted_data)
with open(decrypted_path, 'wb') as decrypted_file:
decrypted_file.write(decrypted_data)
def encrypt_directory(self, directory_path):
for root, dirs, files in os.walk(directory_path):
for file in files:
file_path = os.path.join(root, file)
encrypted_path = file_path + '.encrypted'
self.encrypt_file(file_path, encrypted_path)
os.remove(file_path) # Remove original file
Encryption in Transit
TLS/SSL Implementation
import ssl
import socket
from cryptography import x509
from cryptography.hazmat.backends import default_backend
class TLSManager:
def __init__(self):
self.ssl_context = ssl.create_default_context()
self.certificate_store = {}
def create_secure_connection(self, hostname, port):
# Create secure socket connection
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
secure_sock = self.ssl_context.wrap_socket(sock, server_hostname=hostname)
secure_sock.connect((hostname, port))
return secure_sock
def verify_certificate(self, certificate_path):
# Verify SSL certificate
with open(certificate_path, 'rb') as cert_file:
cert_data = cert_file.read()
certificate = x509.load_pem_x509_certificate(cert_data, default_backend())
# Check certificate validity
if certificate.not_valid_after < datetime.utcnow():
raise ValueError("Certificate has expired")
if certificate.not_valid_before > datetime.utcnow():
raise ValueError("Certificate is not yet valid")
return True
def create_self_signed_certificate(self, common_name):
# Create self-signed certificate for development
from cryptography import x509
from cryptography.x509.oid import NameOID
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import rsa
# Generate private key
private_key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048,
backend=default_backend()
)
# Create certificate
subject = issuer = x509.Name([
x509.NameAttribute(NameOID.COUNTRY_NAME, "US"),
x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, "CA"),
x509.NameAttribute(NameOID.LOCALITY_NAME, "San Francisco"),
x509.NameAttribute(NameOID.ORGANIZATION_NAME, "Vibe Trading"),
x509.NameAttribute(NameOID.COMMON_NAME, common_name),
])
cert = x509.CertificateBuilder().subject_name(
subject
).issuer_name(
issuer
).public_key(
private_key.public_key()
).serial_number(
x509.random_serial_number()
).not_valid_before(
datetime.utcnow()
).not_valid_after(
datetime.utcnow() + timedelta(days=365)
).add_extension(
x509.SubjectAlternativeName([
x509.DNSName(common_name),
]),
critical=False,
).sign(private_key, hashes.SHA256(), default_backend())
return cert, private_key
Privacy Controls
Data Minimization
Data Collection Limits
class DataMinimization:
def __init__(self):
self.collection_rules = {
'required_fields': ['email', 'password'],
'optional_fields': ['phone', 'address'],
'prohibited_fields': ['ssn', 'credit_card', 'bank_account']
}
def validate_data_collection(self, collected_data):
violations = []
# Check for prohibited fields
for field in self.collection_rules['prohibited_fields']:
if field in collected_data:
violations.append(f"Prohibited field collected: {field}")
# Check for excessive data collection
if len(collected_data) > 10:
violations.append("Excessive data collection detected")
# Check for unnecessary personal information
unnecessary_fields = ['age', 'gender', 'race', 'religion']
for field in unnecessary_fields:
if field in collected_data:
violations.append(f"Unnecessary personal information collected: {field}")
return len(violations) == 0, violations
def minimize_collected_data(self, data, purpose):
minimized_data = {}
if purpose == 'authentication':
minimized_data = {k: v for k, v in data.items()
if k in ['email', 'password']}
elif purpose == 'trading':
minimized_data = {k: v for k, v in data.items()
if k in ['email', 'trading_preferences']}
elif purpose == 'support':
minimized_data = {k: v for k, v in data.items()
if k in ['email', 'issue_description']}
return minimized_data
Data Retention Management
class DataRetentionManager:
def __init__(self):
self.retention_policies = {
'user_accounts': 7 * 365, # 7 years
'trading_history': 10 * 365, # 10 years
'audit_logs': 7 * 365, # 7 years
'support_tickets': 3 * 365, # 3 years
'marketing_data': 2 * 365, # 2 years
}
def get_retention_period(self, data_type):
return self.retention_policies.get(data_type, 365) # Default 1 year
def should_delete_data(self, data_type, creation_date):
retention_days = self.get_retention_period(data_type)
age_days = (datetime.utcnow() - creation_date).days
return age_days > retention_days
def schedule_data_deletion(self, data_type, data_id, creation_date):
retention_days = self.get_retention_period(data_type)
deletion_date = creation_date + timedelta(days=retention_days)
# Schedule deletion task
self._schedule_deletion_task(data_id, deletion_date)
def delete_expired_data(self):
expired_data = self._find_expired_data()
for data_item in expired_data:
self._delete_data_item(data_item['id'])
self._log_deletion(data_item)
User Consent Management
Consent Tracking
class ConsentManager:
def __init__(self):
self.consent_types = [
'data_processing',
'marketing_communications',
'analytics_tracking',
'third_party_sharing',
'cookies'
]
def record_consent(self, user_id, consent_type, granted, timestamp=None):
if timestamp is None:
timestamp = datetime.utcnow()
consent_record = {
'user_id': user_id,
'consent_type': consent_type,
'granted': granted,
'timestamp': timestamp,
'ip_address': self._get_user_ip(),
'user_agent': self._get_user_agent()
}
self._store_consent_record(consent_record)
return consent_record
def get_user_consent(self, user_id, consent_type):
consent_records = self._get_consent_records(user_id, consent_type)
if not consent_records:
return None
# Get most recent consent
latest_consent = max(consent_records, key=lambda x: x['timestamp'])
return latest_consent['granted']
def withdraw_consent(self, user_id, consent_type):
self.record_consent(user_id, consent_type, False)
# Process consent withdrawal
if consent_type == 'data_processing':
self._initiate_data_deletion(user_id)
elif consent_type == 'marketing_communications':
self._unsubscribe_from_marketing(user_id)
def validate_consent(self, user_id, action):
required_consents = self._get_required_consents(action)
for consent_type in required_consents:
if not self.get_user_consent(user_id, consent_type):
return False, f"Consent required for {consent_type}"
return True, "All required consents granted"
GDPR Compliance
Data Subject Rights
Right to Access
class DataSubjectAccess:
def __init__(self, data_manager):
self.data_manager = data_manager
def generate_data_export(self, user_id):
# Collect all user data
user_data = {
'personal_information': self._get_personal_info(user_id),
'trading_history': self._get_trading_history(user_id),
'account_activity': self._get_account_activity(user_id),
'communications': self._get_communications(user_id),
'consent_records': self._get_consent_records(user_id)
}
# Generate export file
export_file = self._create_export_file(user_data)
return export_file
def _get_personal_info(self, user_id):
return self.data_manager.get_user_profile(user_id)
def _get_trading_history(self, user_id):
return self.data_manager.get_trading_history(user_id)
def _get_account_activity(self, user_id):
return self.data_manager.get_account_activity(user_id)
def _get_communications(self, user_id):
return self.data_manager.get_communications(user_id)
def _get_consent_records(self, user_id):
return self.data_manager.get_consent_records(user_id)
Right to Rectification
class DataRectification:
def __init__(self, data_manager):
self.data_manager = data_manager
def rectify_user_data(self, user_id, corrections):
# Validate corrections
validated_corrections = self._validate_corrections(corrections)
# Apply corrections
for field, new_value in validated_corrections.items():
self.data_manager.update_user_field(user_id, field, new_value)
# Log rectification
self._log_rectification(user_id, corrections)
return True
def _validate_corrections(self, corrections):
validated = {}
for field, value in corrections.items():
if self._is_valid_field(field) and self._is_valid_value(field, value):
validated[field] = value
return validated
Right to Erasure (Right to be Forgotten)
class DataErasure:
def __init__(self, data_manager):
self.data_manager = data_manager
def erase_user_data(self, user_id, reason):
# Check if erasure is legally required
if not self._is_erasure_required(user_id, reason):
return False, "Erasure not legally required"
# Anonymize or delete data
self._anonymize_user_data(user_id)
# Log erasure
self._log_erasure(user_id, reason)
return True, "Data erased successfully"
def _anonymize_user_data(self, user_id):
# Anonymize personal data
self.data_manager.anonymize_user_profile(user_id)
# Delete sensitive data
self.data_manager.delete_sensitive_data(user_id)
# Retain data required by law
self.data_manager.retain_required_data(user_id)
Data Protection Impact Assessment (DPIA)
DPIA Framework
class DPIAFramework:
def __init__(self):
self.risk_factors = [
'data_volume',
'data_sensitivity',
'processing_purpose',
'data_subjects',
'retention_period',
'third_party_sharing'
]
def conduct_dpia(self, processing_activity):
# Assess risk factors
risk_assessment = self._assess_risk_factors(processing_activity)
# Calculate overall risk score
overall_risk = self._calculate_overall_risk(risk_assessment)
# Determine if DPIA is required
dpia_required = overall_risk > 0.7
# Generate recommendations
recommendations = self._generate_recommendations(risk_assessment)
return {
'dpia_required': dpia_required,
'overall_risk': overall_risk,
'risk_assessment': risk_assessment,
'recommendations': recommendations
}
def _assess_risk_factors(self, processing_activity):
risk_scores = {}
for factor in self.risk_factors:
risk_scores[factor] = self._assess_factor_risk(factor, processing_activity)
return risk_scores
def _calculate_overall_risk(self, risk_assessment):
# Weighted average of risk factors
weights = {
'data_volume': 0.15,
'data_sensitivity': 0.25,
'processing_purpose': 0.20,
'data_subjects': 0.15,
'retention_period': 0.10,
'third_party_sharing': 0.15
}
overall_risk = sum(risk_assessment[factor] * weights[factor]
for factor in self.risk_factors)
return overall_risk
CCPA Compliance
California Consumer Rights
Right to Know
class CCPACompliance:
def __init__(self, data_manager):
self.data_manager = data_manager
def handle_know_request(self, consumer_id):
# Collect information about data collection
data_collection_info = {
'categories_collected': self._get_categories_collected(consumer_id),
'sources': self._get_data_sources(consumer_id),
'business_purposes': self._get_business_purposes(consumer_id),
'third_parties': self._get_third_parties(consumer_id)
}
return data_collection_info
def _get_categories_collected(self, consumer_id):
categories = [
'identifiers',
'personal_information',
'commercial_information',
'internet_activity',
'geolocation_data',
'sensory_data',
'professional_information',
'education_information',
'inferences'
]
return categories
def _get_data_sources(self, consumer_id):
sources = [
'directly_from_consumer',
'third_party_data_providers',
'public_sources',
'cookies_and_tracking'
]
return sources
Right to Delete
class CCPADeletion:
def __init__(self, data_manager):
self.data_manager = data_manager
def handle_deletion_request(self, consumer_id):
# Verify consumer identity
if not self._verify_consumer_identity(consumer_id):
return False, "Identity verification failed"
# Check for exceptions
exceptions = self._check_deletion_exceptions(consumer_id)
if exceptions:
return False, f"Deletion not possible due to: {exceptions}"
# Delete consumer data
self._delete_consumer_data(consumer_id)
return True, "Data deleted successfully"
def _check_deletion_exceptions(self, consumer_id):
exceptions = []
# Check for legal obligations
if self._has_legal_obligations(consumer_id):
exceptions.append("legal_obligations")
# Check for business purposes
if self._has_business_purposes(consumer_id):
exceptions.append("business_purposes")
# Check for security purposes
if self._has_security_purposes(consumer_id):
exceptions.append("security_purposes")
return exceptions
Data Breach Response
Breach Detection
Automated Monitoring
class BreachDetection:
def __init__(self):
self.monitoring_rules = [
'unusual_data_access',
'unauthorized_login_attempts',
'data_exfiltration_patterns',
'system_intrusions'
]
def monitor_for_breaches(self):
alerts = []
for rule in self.monitoring_rules:
if self._check_rule(rule):
alerts.append(self._create_alert(rule))
return alerts
def _check_rule(self, rule):
if rule == 'unusual_data_access':
return self._check_unusual_access()
elif rule == 'unauthorized_login_attempts':
return self._check_login_attempts()
elif rule == 'data_exfiltration_patterns':
return self._check_exfiltration_patterns()
elif rule == 'system_intrusions':
return self._check_system_intrusions()
return False
Breach Response
Incident Response Plan
class BreachResponse:
def __init__(self):
self.response_steps = [
'contain_breach',
'assess_impact',
'notify_authorities',
'notify_affected_users',
'remediate_vulnerabilities',
'document_incident'
]
def handle_breach(self, breach_details):
response_log = []
for step in self.response_steps:
result = self._execute_step(step, breach_details)
response_log.append({
'step': step,
'result': result,
'timestamp': datetime.utcnow().isoformat()
})
return response_log
def _execute_step(self, step, breach_details):
if step == 'contain_breach':
return self._contain_breach(breach_details)
elif step == 'assess_impact':
return self._assess_impact(breach_details)
elif step == 'notify_authorities':
return self._notify_authorities(breach_details)
elif step == 'notify_affected_users':
return self._notify_affected_users(breach_details)
elif step == 'remediate_vulnerabilities':
return self._remediate_vulnerabilities(breach_details)
elif step == 'document_incident':
return self._document_incident(breach_details)
Best Practices
Data Protection Checklist
Implementation Checklist
- ✅ Data Classification: Classify all data by sensitivity level
- ✅ Encryption: Encrypt data at rest and in transit
- ✅ Access Controls: Implement role-based access controls
- ✅ Audit Logging: Log all data access and modifications
- ✅ Data Minimization: Collect only necessary data
- ✅ Retention Policies: Implement data retention policies
- ✅ Consent Management: Track and manage user consent
- ✅ Breach Response: Have incident response plan ready
- ✅ Regular Audits: Conduct regular security audits
- ✅ Staff Training: Train staff on data protection
Compliance Guidelines
- GDPR Compliance: Implement all GDPR requirements
- CCPA Compliance: Meet California Consumer Privacy Act requirements
- Financial Regulations: Comply with financial data protection laws
- Regular Updates: Keep compliance measures updated
- Documentation: Maintain comprehensive documentation
- Testing: Regularly test compliance measures
Ready to ensure compliance? Check out our Compliance guide.