Performance Issues

Comprehensive guide to identifying, diagnosing, and resolving performance issues in the Vibe Trading platform.

Overview

Performance issues can significantly impact your trading experience and profitability. This guide covers common performance problems, diagnostic tools, optimization strategies, and best practices for maintaining optimal performance.

Common Performance Issues

Slow Order Execution

Symptoms

  • Orders taking longer than expected to execute
  • Delayed order confirmations
  • Timeout errors during order placement

Causes

  • Network latency
  • Server overload
  • Market volatility
  • Order size too large
  • Insufficient liquidity

Diagnostic Steps

import time
import requests

class OrderPerformanceMonitor:
    def __init__(self):
        self.order_times = []
    
    def measure_order_execution(self, order_data):
        start_time = time.time()
        
        try:
            response = requests.post('/api/v1/orders', json=order_data)
            end_time = time.time()
            
            execution_time = end_time - start_time
            self.order_times.append(execution_time)
            
            return {
                'success': True,
                'execution_time': execution_time,
                'order_id': response.json().get('orderId')
            }
        except Exception as e:
            end_time = time.time()
            execution_time = end_time - start_time
            
            return {
                'success': False,
                'execution_time': execution_time,
                'error': str(e)
            }
    
    def get_performance_stats(self):
        if not self.order_times:
            return None
        
        return {
            'average_time': sum(self.order_times) / len(self.order_times),
            'min_time': min(self.order_times),
            'max_time': max(self.order_times),
            'total_orders': len(self.order_times)
        }

Solutions

  1. Optimize Network Connection

    • Use wired connection instead of WiFi
    • Choose server location closest to you
    • Use dedicated trading connection
  2. Reduce Order Size

    • Split large orders into smaller chunks
    • Use limit orders instead of market orders
    • Consider order timing
  3. Improve Order Parameters

    • Use appropriate order types
    • Set realistic price limits
    • Avoid peak trading hours

High Latency Issues

Symptoms

  • Delayed data updates
  • Slow WebSocket connections
  • Lag in real-time features

Causes

  • Network congestion
  • Server distance
  • Inefficient data processing
  • Browser performance issues

Diagnostic Tools

class LatencyMonitor {
    constructor() {
        this.latencyMeasurements = [];
        this.startTime = null;
    }
    
    startMeasurement() {
        this.startTime = performance.now();
    }
    
    endMeasurement() {
        if (this.startTime) {
            const latency = performance.now() - this.startTime;
            this.latencyMeasurements.push(latency);
            this.startTime = null;
            return latency;
        }
        return null;
    }
    
    getAverageLatency() {
        if (this.latencyMeasurements.length === 0) return 0;
        return this.latencyMeasurements.reduce((a, b) => a + b) / this.latencyMeasurements.length;
    }
    
    getLatencyStats() {
        if (this.latencyMeasurements.length === 0) return null;
        
        const sorted = [...this.latencyMeasurements].sort((a, b) => a - b);
        return {
            average: this.getAverageLatency(),
            min: sorted[0],
            max: sorted[sorted.length - 1],
            median: sorted[Math.floor(sorted.length / 2)],
            p95: sorted[Math.floor(sorted.length * 0.95)]
        };
    }
}

Solutions

  1. Network Optimization

    • Use CDN for static resources
    • Implement connection pooling
    • Use compression for data transfer
  2. Client-Side Optimization

    • Optimize JavaScript code
    • Use efficient data structures
    • Implement caching strategies
  3. Server-Side Optimization

    • Use caching layers
    • Optimize database queries
    • Implement load balancing

Memory Usage Issues

Symptoms

  • Browser becomes slow or unresponsive
  • High memory consumption
  • Memory leaks in long-running sessions

Causes

  • Inefficient data structures
  • Memory leaks in JavaScript
  • Large datasets in memory
  • Poor garbage collection

Diagnostic Code

class MemoryMonitor {
    constructor() {
        this.memorySnapshots = [];
        this.intervalId = null;
    }
    
    startMonitoring(intervalMs = 5000) {
        this.intervalId = setInterval(() => {
            this.takeSnapshot();
        }, intervalMs);
    }
    
    stopMonitoring() {
        if (this.intervalId) {
            clearInterval(this.intervalId);
            this.intervalId = null;
        }
    }
    
    takeSnapshot() {
        if (performance.memory) {
            const snapshot = {
                timestamp: Date.now(),
                usedJSHeapSize: performance.memory.usedJSHeapSize,
                totalJSHeapSize: performance.memory.totalJSHeapSize,
                jsHeapSizeLimit: performance.memory.jsHeapSizeLimit
            };
            this.memorySnapshots.push(snapshot);
        }
    }
    
    getMemoryStats() {
        if (this.memorySnapshots.length < 2) return null;
        
        const latest = this.memorySnapshots[this.memorySnapshots.length - 1];
        const previous = this.memorySnapshots[this.memorySnapshots.length - 2];
        
        return {
            currentUsage: latest.usedJSHeapSize,
            usageChange: latest.usedJSHeapSize - previous.usedJSHeapSize,
            totalSnapshots: this.memorySnapshots.length
        };
    }
    
    detectMemoryLeaks() {
        if (this.memorySnapshots.length < 10) return false;
        
        const recent = this.memorySnapshots.slice(-10);
        const trend = recent.map(s => s.usedJSHeapSize);
        
        // Check if memory usage is consistently increasing
        let increasingCount = 0;
        for (let i = 1; i < trend.length; i++) {
            if (trend[i] > trend[i-1]) {
                increasingCount++;
            }
        }
        
        return increasingCount > 7; // 70% of measurements show increase
    }
}

Solutions

  1. Code Optimization

    • Remove unused variables and functions
    • Use efficient data structures
    • Implement proper cleanup
  2. Data Management

    • Limit data retention
    • Use pagination for large datasets
    • Implement data compression
  3. Browser Optimization

    • Close unused tabs
    • Clear browser cache
    • Use hardware acceleration

API Performance Issues

Symptoms

  • Slow API responses
  • Timeout errors
  • Rate limiting errors

Causes

  • Inefficient API calls
  • Poor request batching
  • Inadequate error handling
  • Network issues

Performance Optimization

import asyncio
import aiohttp
from concurrent.futures import ThreadPoolExecutor

class OptimizedAPIClient:
    def __init__(self, base_url, max_concurrent_requests=10):
        self.base_url = base_url
        self.max_concurrent_requests = max_concurrent_requests
        self.semaphore = asyncio.Semaphore(max_concurrent_requests)
        self.session = None
    
    async def __aenter__(self):
        self.session = aiohttp.ClientSession()
        return self
    
    async def __aexit__(self, exc_type, exc_val, exc_tb):
        if self.session:
            await self.session.close()
    
    async def make_request(self, endpoint, method='GET', **kwargs):
        async with self.semaphore:
            url = f"{self.base_url}{endpoint}"
            
            async with self.session.request(method, url, **kwargs) as response:
                return await response.json()
    
    async def batch_requests(self, requests):
        """Execute multiple requests concurrently"""
        tasks = []
        for request in requests:
            task = self.make_request(**request)
            tasks.append(task)
        
        results = await asyncio.gather(*tasks, return_exceptions=True)
        return results
    
    def optimize_requests(self, requests):
        """Optimize request batching and ordering"""
        # Group requests by endpoint
        grouped_requests = {}
        for request in requests:
            endpoint = request.get('endpoint', '')
            if endpoint not in grouped_requests:
                grouped_requests[endpoint] = []
            grouped_requests[endpoint].append(request)
        
        # Prioritize critical requests
        critical_endpoints = ['/orders', '/account', '/positions']
        optimized_requests = []
        
        for endpoint in critical_endpoints:
            if endpoint in grouped_requests:
                optimized_requests.extend(grouped_requests[endpoint])
        
        # Add remaining requests
        for endpoint, requests_list in grouped_requests.items():
            if endpoint not in critical_endpoints:
                optimized_requests.extend(requests_list)
        
        return optimized_requests

Performance Monitoring

Real-Time Monitoring

Performance Metrics Collection

import time
import psutil
import threading
from collections import deque

class PerformanceMonitor:
    def __init__(self, max_samples=1000):
        self.max_samples = max_samples
        self.metrics = {
            'cpu_usage': deque(maxlen=max_samples),
            'memory_usage': deque(maxlen=max_samples),
            'network_latency': deque(maxlen=max_samples),
            'api_response_time': deque(maxlen=max_samples),
            'order_execution_time': deque(maxlen=max_samples)
        }
        self.monitoring = False
        self.monitor_thread = None
    
    def start_monitoring(self, interval=1):
        self.monitoring = True
        self.monitor_thread = threading.Thread(target=self._monitor_loop, args=(interval,))
        self.monitor_thread.daemon = True
        self.monitor_thread.start()
    
    def stop_monitoring(self):
        self.monitoring = False
        if self.monitor_thread:
            self.monitor_thread.join()
    
    def _monitor_loop(self, interval):
        while self.monitoring:
            self._collect_metrics()
            time.sleep(interval)
    
    def _collect_metrics(self):
        # CPU usage
        cpu_percent = psutil.cpu_percent()
        self.metrics['cpu_usage'].append(cpu_percent)
        
        # Memory usage
        memory = psutil.virtual_memory()
        self.metrics['memory_usage'].append(memory.percent)
        
        # Network latency (simplified)
        latency = self._measure_latency()
        self.metrics['network_latency'].append(latency)
    
    def _measure_latency(self):
        # Simplified latency measurement
        start_time = time.time()
        # Simulate network request
        time.sleep(0.001)  # 1ms simulation
        return (time.time() - start_time) * 1000  # Convert to milliseconds
    
    def record_api_response_time(self, response_time):
        self.metrics['api_response_time'].append(response_time)
    
    def record_order_execution_time(self, execution_time):
        self.metrics['order_execution_time'].append(execution_time)
    
    def get_performance_summary(self):
        summary = {}
        
        for metric_name, values in self.metrics.items():
            if values:
                summary[metric_name] = {
                    'current': values[-1],
                    'average': sum(values) / len(values),
                    'min': min(values),
                    'max': max(values),
                    'samples': len(values)
                }
        
        return summary
    
    def detect_performance_issues(self):
        issues = []
        summary = self.get_performance_summary()
        
        # Check CPU usage
        if 'cpu_usage' in summary:
            if summary['cpu_usage']['current'] > 80:
                issues.append('High CPU usage detected')
        
        # Check memory usage
        if 'memory_usage' in summary:
            if summary['memory_usage']['current'] > 85:
                issues.append('High memory usage detected')
        
        # Check API response time
        if 'api_response_time' in summary:
            if summary['api_response_time']['average'] > 1000:  # 1 second
                issues.append('Slow API response times')
        
        # Check order execution time
        if 'order_execution_time' in summary:
            if summary['order_execution_time']['average'] > 500:  # 500ms
                issues.append('Slow order execution')
        
        return issues

Performance Alerts

Alert System

class PerformanceAlertSystem:
    def __init__(self):
        self.alert_thresholds = {
            'cpu_usage': 80,
            'memory_usage': 85,
            'api_response_time': 1000,
            'order_execution_time': 500,
            'network_latency': 100
        }
        self.alert_history = []
        self.alert_callbacks = []
    
    def add_alert_callback(self, callback):
        self.alert_callbacks.append(callback)
    
    def check_alerts(self, metrics):
        alerts = []
        
        for metric_name, threshold in self.alert_thresholds.items():
            if metric_name in metrics:
                current_value = metrics[metric_name]['current']
                
                if current_value > threshold:
                    alert = {
                        'metric': metric_name,
                        'value': current_value,
                        'threshold': threshold,
                        'timestamp': time.time(),
                        'severity': self._calculate_severity(current_value, threshold)
                    }
                    alerts.append(alert)
        
        if alerts:
            self._process_alerts(alerts)
        
        return alerts
    
    def _calculate_severity(self, value, threshold):
        ratio = value / threshold
        
        if ratio > 2:
            return 'critical'
        elif ratio > 1.5:
            return 'high'
        elif ratio > 1.2:
            return 'medium'
        else:
            return 'low'
    
    def _process_alerts(self, alerts):
        for alert in alerts:
            self.alert_history.append(alert)
            
            # Call registered callbacks
            for callback in self.alert_callbacks:
                try:
                    callback(alert)
                except Exception as e:
                    print(f"Alert callback error: {e}")
    
    def get_alert_summary(self, hours=24):
        cutoff_time = time.time() - (hours * 3600)
        recent_alerts = [a for a in self.alert_history if a['timestamp'] > cutoff_time]
        
        summary = {
            'total_alerts': len(recent_alerts),
            'critical_alerts': len([a for a in recent_alerts if a['severity'] == 'critical']),
            'high_alerts': len([a for a in recent_alerts if a['severity'] == 'high']),
            'medium_alerts': len([a for a in recent_alerts if a['severity'] == 'medium']),
            'low_alerts': len([a for a in recent_alerts if a['severity'] == 'low'])
        }
        
        return summary

Optimization Strategies

Code Optimization

Efficient Data Processing

import pandas as pd
import numpy as np
from functools import lru_cache

class OptimizedDataProcessor:
    def __init__(self):
        self.cache = {}
    
    @lru_cache(maxsize=128)
    def calculate_technical_indicators(self, price_data_hash, window_size):
        """Calculate technical indicators with caching"""
        # Simulate technical indicator calculation
        prices = np.array([100, 101, 102, 103, 104, 105, 106, 107, 108, 109])
        
        # Simple moving average
        sma = np.convolve(prices, np.ones(window_size)/window_size, mode='valid')
        
        # RSI calculation
        delta = np.diff(prices)
        gain = np.where(delta > 0, delta, 0)
        loss = np.where(delta < 0, -delta, 0)
        
        avg_gain = np.mean(gain)
        avg_loss = np.mean(loss)
        
        if avg_loss == 0:
            rsi = 100
        else:
            rs = avg_gain / avg_loss
            rsi = 100 - (100 / (1 + rs))
        
        return {
            'sma': sma.tolist(),
            'rsi': rsi
        }
    
    def batch_process_data(self, data_batch):
        """Process multiple data points efficiently"""
        results = []
        
        for data_point in data_batch:
            # Use vectorized operations where possible
            processed = self._vectorized_process(data_point)
            results.append(processed)
        
        return results
    
    def _vectorized_process(self, data_point):
        """Use NumPy for vectorized operations"""
        if isinstance(data_point, (list, tuple)):
            data_array = np.array(data_point)
            
            # Vectorized calculations
            mean_val = np.mean(data_array)
            std_val = np.std(data_array)
            max_val = np.max(data_array)
            min_val = np.min(data_array)
            
            return {
                'mean': mean_val,
                'std': std_val,
                'max': max_val,
                'min': min_val
            }
        
        return data_point
    
    def optimize_memory_usage(self, data):
        """Optimize memory usage for large datasets"""
        if isinstance(data, pd.DataFrame):
            # Convert to more memory-efficient types
            for col in data.columns:
                if data[col].dtype == 'object':
                    # Try to convert to category if possible
                    if data[col].nunique() / len(data) < 0.5:
                        data[col] = data[col].astype('category')
                elif data[col].dtype == 'float64':
                    # Convert to float32 if precision allows
                    data[col] = pd.to_numeric(data[col], downcast='float')
                elif data[col].dtype == 'int64':
                    # Convert to smaller int types if possible
                    data[col] = pd.to_numeric(data[col], downcast='integer')
        
        return data

Caching Strategies

import redis
import json
from datetime import datetime, timedelta

class PerformanceCache:
    def __init__(self, redis_client=None):
        self.redis_client = redis_client
        self.local_cache = {}
        self.cache_ttl = {
            'market_data': 60,  # 1 minute
            'ai_signals': 300,  # 5 minutes
            'user_data': 3600,  # 1 hour
            'static_data': 86400  # 24 hours
        }
    
    def get(self, key, cache_type='default'):
        # Try local cache first
        if key in self.local_cache:
            cached_item = self.local_cache[key]
            if datetime.now() < cached_item['expires']:
                return cached_item['data']
            else:
                del self.local_cache[key]
        
        # Try Redis cache
        if self.redis_client:
            try:
                cached_data = self.redis_client.get(key)
                if cached_data:
                    return json.loads(cached_data)
            except Exception as e:
                print(f"Redis cache error: {e}")
        
        return None
    
    def set(self, key, data, cache_type='default'):
        ttl = self.cache_ttl.get(cache_type, 3600)
        expires = datetime.now() + timedelta(seconds=ttl)
        
        # Store in local cache
        self.local_cache[key] = {
            'data': data,
            'expires': expires
        }
        
        # Store in Redis cache
        if self.redis_client:
            try:
                self.redis_client.setex(key, ttl, json.dumps(data))
            except Exception as e:
                print(f"Redis cache error: {e}")
    
    def invalidate(self, key):
        # Remove from local cache
        if key in self.local_cache:
            del self.local_cache[key]
        
        # Remove from Redis cache
        if self.redis_client:
            try:
                self.redis_client.delete(key)
            except Exception as e:
                print(f"Redis cache error: {e}")
    
    def clear_expired(self):
        """Clear expired items from local cache"""
        now = datetime.now()
        expired_keys = [
            key for key, item in self.local_cache.items()
            if now >= item['expires']
        ]
        
        for key in expired_keys:
            del self.local_cache[key]

Network Optimization

Connection Pooling

import aiohttp
import asyncio
from aiohttp import ClientSession, TCPConnector

class OptimizedHTTPClient:
    def __init__(self, max_connections=100, max_connections_per_host=30):
        self.max_connections = max_connections
        self.max_connections_per_host = max_connections_per_host
        self.session = None
        self.connector = None
    
    async def __aenter__(self):
        # Create optimized connector
        self.connector = TCPConnector(
            limit=self.max_connections,
            limit_per_host=self.max_connections_per_host,
            keepalive_timeout=30,
            enable_cleanup_closed=True
        )
        
        # Create session with optimized settings
        timeout = aiohttp.ClientTimeout(total=30, connect=10)
        self.session = ClientSession(
            connector=self.connector,
            timeout=timeout,
            headers={'Connection': 'keep-alive'}
        )
        
        return self
    
    async def __aexit__(self, exc_type, exc_val, exc_tb):
        if self.session:
            await self.session.close()
        if self.connector:
            await self.connector.close()
    
    async def get(self, url, **kwargs):
        async with self.session.get(url, **kwargs) as response:
            return await response.json()
    
    async def post(self, url, **kwargs):
        async with self.session.post(url, **kwargs) as response:
            return await response.json()
    
    async def batch_requests(self, requests):
        """Execute multiple requests concurrently"""
        tasks = []
        
        for request in requests:
            method = request.get('method', 'GET')
            url = request.get('url')
            kwargs = request.get('kwargs', {})
            
            if method.upper() == 'GET':
                task = self.get(url, **kwargs)
            elif method.upper() == 'POST':
                task = self.post(url, **kwargs)
            else:
                continue
            
            tasks.append(task)
        
        results = await asyncio.gather(*tasks, return_exceptions=True)
        return results

Best Practices

Performance Optimization Checklist

General Optimization

  • Monitor Performance: Implement continuous monitoring
  • Optimize Code: Use efficient algorithms and data structures
  • Implement Caching: Cache frequently accessed data
  • Use Compression: Compress data transfers
  • Minimize Network Calls: Batch requests when possible
  • Optimize Database: Use proper indexing and queries
  • Implement CDN: Use content delivery networks
  • Monitor Memory: Prevent memory leaks
  • Use Async Operations: Implement asynchronous processing
  • Regular Profiling: Profile code for bottlenecks

Trading-Specific Optimization

  • Order Batching: Batch multiple orders efficiently
  • Real-Time Data: Optimize WebSocket connections
  • Signal Processing: Efficient AI signal processing
  • Risk Management: Optimize risk calculations
  • Portfolio Updates: Efficient portfolio tracking
  • Market Data: Optimize market data processing
  • Backtesting: Efficient historical data processing
  • Alert Systems: Optimize notification delivery
  • Data Storage: Efficient data persistence
  • API Rate Limiting: Implement proper rate limiting

Performance Monitoring Guidelines

Key Metrics to Monitor

  • Response Time: API and order execution times
  • Throughput: Requests per second
  • Error Rate: Percentage of failed requests
  • Resource Usage: CPU, memory, network usage
  • User Experience: Page load times, interaction delays

Alert Thresholds

  • Critical: Response time > 5 seconds
  • High: Response time > 2 seconds
  • Medium: Response time > 1 second
  • Low: Response time > 500ms

Regular Maintenance

  • Daily: Check performance metrics
  • Weekly: Review optimization opportunities
  • Monthly: Conduct performance audits
  • Quarterly: Update optimization strategies

Need support? Check out our Support guide.